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liA!CIOiTALADVISORY COMMITTEE YOR AIIRONAUl!ICS

TECHNICAL NOTE NO. 773

CHART FOR CRITICAL COMPRESSIVE STRESS 03’

YLAT RECTANGULAR PLATES

By H. l?, Hill
●

SUMMARY

A chart is presented for the coefficient K in the
formula for the critical compressive stress for flat ret- .
tangular plates unifornly compressed in one direction.

-.

The chart applies to various combinations of fixed, sim’ply
supported, and free edges.

Chart for K in Formula for Critical Stress

The theoretical stress at which a rectangular flat
plato will buckle elastically, when uniformly compressed
in one direction, can be expressed (see reference 1, p.
331)

~()
2

‘cr =K—
(l:P”) -b

.

critical stress (at which buckling occurs) ,
pounds per square inch

.

.-

modulus of elasticity of the material of the
plate, pounds per square inch ,

Poissonls ratio of the material of the plate

thickness of the plate, inch

width of the plate (normal to the direction
of compression) , inch .—.—

a coefficient depending on the ratio of length. . .
to width of the plate (L/b), the conditions
of restraint at the edges of the plate, and
in some cases on the Poisson!s ratio of the,
material of the plate .—
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In designing structures involving flat plates, a
chart from which X VLLIUOS for the a%ove equation could ~.
be obts+,ined, for various conditions of edge restraint,
should prove & convenience. It l~ould be impassible to .—
include all the possi.D].e ~arie.tions or combinations of
e’dge conditions, but b;~ defining thr.e,edefinite edge con- —.
ditions, and considering the various combinations of these
conditions that might occur, certain limiting cases are
obtained. Other cases involving intermediate conditions

-.

of edge restraint will he ‘bounded by several of these lim-
iting c.aseso The defiaiteodge conditions considered arc:

.—.
1. l?roc edge - an edga about which the plate is free

to rotate and at which the plate is free to de-
flect.

9
=

?+. Supported edge -an adge about which the plate is-
fl”ee to rotate but at ~,,hichther~ can be no de-
flection.

*

-.

3. Fixed edge -
.-----~.-

an’ edge at whfch there c~n”be no de-
flection and about which there can be no rota-
tion of the plate, ‘“-”

The buckling stress for a rectangular flat plate sub-
jected to uniform compression j.n one direction, with the
unloaded edges fi-e~, can be determined from the column
formulas. For plates, “E” in the column formulas should be
replaced by the ‘~late modulusll [Z/(l-Va)J (reference z,p.4?5).

For plates with other edge conditions K Va.luos io ie -
used in the equation for critical stress can bo obtainod
from tho curves plotted in figure 1., Curves are given for
five combinations of conditions of restraint at the unloaded
cdgosa Ii’oreach of these combinations two conditions of
the loaded edges have been considor.ed,. Theoretically,
curves for all cases but ccscs 1 qnd la should bo composed
of a series of scallops, each scallop representing buckling
into a certain number cf half wave6.s . ,~.or practical reasons,
however, these scallops ‘ha+c been el~ninatbd. !l?hecurves
shown in figure 1 arc tho cnvelo~e curves drawa tzmgont to
the SCCillOpSo

The curves of figure 1 represent various degrees of
approximation to the theoretically correct valu~s, although
in every case the curves aro sufficiently accurate for de-._.
sign purposes. The sources from whicli K values for the
different cases were obtained are given in table 1, togothor
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with pertinent remarks concerning the ~lotting of the
curves. For those cases for which K values were obtained
directly by the writer, the major elements of the method
of solution employed are given in tablo I and the solutions
are included in an appendix to this report.

For the cases in which one unloaded edge of the plate
is free (1, la, 2, and 2a), the K values are based on a
Poisson!s ratio valu~ of 1/3, which is tho accepted value
for aluminum. alloys. In some instances, a Clifferonce be-
tween Poiseon~s ratio values of 1/4 and 1/3 is responsible
,for a difference of as much as 15 percent in the K value,
For cases other than those involving one free edge, thc-
curves of figure 1 are applicable to a~elastic material,
the K values being independent of Poissonts ratio.

.

. .—

Tho curves of fi,guro 1 demons.trata tho importance of
the condition of restraint of the locuiod odgos in determin-
ing the buckling stress of rectangular flat plates having
L/b ratios 113ss thqz 3. - ——

Aluminum Company of America, :.
Aluminum Roscarch Laboratories,

New Kensington, Pa., April.16, 1940,
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kABLE I.: ,:.., .

SOURCI! Or K VALUES “Pi”OT!!2EnIN “TIGURli!1
,..

Case Sourc’o”and Remark”s

1

la

2

2a

3

?ia

4

4a

5

5a

Solution from T’imoshenko !“s”‘lTheory of Elastic
Stability, llpp. 339-340, and the va’lues calculated
by the writer for & P’oii80nls ratio value of 1/3.

.
Approximate solution by the writer, using the energy

method and the deflection function ..
w = A(l-cos %x/L)(y -t-ByT),’in which B = f(b,~)
is determined from bound~ry. conditions .

Solution from Yimoshenko~s llTheory of Elastic
Stability, J1‘p. 341, and values calculated by the
writer for a Poissonrs ratio value of 1/3.

Approximate solution by the writer, using the enargy
method and doflcction functions

.*

w = .ti(l-cos 21Tx/L)(l-cos ny/b) for buckling in one
half wave, and w = A(sin 2Jx/L + Bx3/L3)(l-cos ny/B) ~
for buckling in r.ny oven num%er of half waves. coof- —
cients n, B, and J arc detcrminod from boundary

-.

coalitions.
H

Solution from Tiaoshenk.ols I!Theory of Xlastic
Stability, lfpp. 329-332.

.-

.=

Solution from Timoshenkots ~lTheory of Elastic
Stability, l[PI?. 363-364,

Solution by the writer following the method employed
by Timoshenko in IiTheory of Elastic Stability, 11
PP ●

337-342.

Tho relation df this curve to that for caso 4 is csti-
inatod from tho relation.s betwocn the curves for
cases 3 and 3a and CUSGS 5 and 5a.

Solution from Timoshonko~s llThcory of Elastic
Stability, llpp. 344-345.

Solution from llBuc~lillg of Commrcsscd Rcctar-~ular .
Plates with Built-i; Edges,~l by J. L. Mauibctsch,

EI

Journal of Applied Mechauics, June 193’7.
.

w
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APPZNDIX
,. ,.,..

Consider a flat pinto of length L and width h,
subjected to n uniform end comprcs,sion (in the L d.Yrec-
tion) of N= per unit width. Consi”der thti axgs disposod
as indicated in figure 2, If the deflection of the plate
out of its original plane is “denoted by w, the differen-
tial equation for the buckled plate may he expressed (ref-
erence 1, p. 337)

~ 4W a4w &= ~x Z)aw
ZF + 2 ax2aya + ay4 -72

(1) ‘“

~t3
where D= rigidity of the plate per unit width

12(1-~2)

The various boundary conditions for the edge8 of the
plato parallel to the x axis may be exprassed as follows
(reference 1, pp. 29a-300):

For ‘fixed’! edges,

o aw
w= and

ay=o

For lisupportedll edges,

w= o and a% a2w
~ +~~=o

l?or ‘lfreei~edges,

In cases in which load is applied to ”i!supportedl; edges,
the problem of the buckling of a flat plate under edge com-
pression can be solved by integration of the differe-htial
equation, obtaining tha constants of integration from tho
boundary ‘conditions. Such a m~thod has- %een emploYed by
Timoshenko for obtaining the solution for cases 1, 2, and
5, as well as for certain cases involving intermediate con-
ditions of edge restraint (reference 1, pp. 337-350). In
obtaining a solution for case 4, the writer has follo-wed
the integration method of Timoshenko, determining integra-

—

tion constants consistent with the boundary conditions”f%~
this case. ‘ ,
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Yor cases in which tho loaded edges are l.fixed,llthe
above-mentionod method of integrating the differential +.
equation cannot be used, and it is convenient to resort
to one of the o.pproximato methods for obtaining a solution.
The writer has obtained approximat~ solutions for cases
la and 2a %y application of the lteuorgylrmethod, This
method also hns been used extensively by Timoshenko (ref-
eror.cc 1, p. 81) . The ‘renergy equation, llobtainod by
equating expressions for the work of external forcos and
the energy of bending nay bo written:

.-

(2)

.4
—

The critical value for Ifx” is obtained by solving this
equation, using an expression for tho dofloction w,

#-
which

is some function of x and y and satisfies the boundary
conditions of tho case beiag considered, Except in the very T

improbable instance when the assunod expression for tho do-
a.

floction exactly defines the configuration of the buckled
plate, the criticnl load values ohtainod by the energy meth-
od ar~ always higher than the ‘true values (roferenco 1, p,
81)0 The degree of approximation of tho energy method can
soroetincs bo improved by including a parameter i.a the ex-
pression for the deflected surface, and evaluatin~ this pa-
ranotor so as to minimize the value determined for tho
critical load,

Caso la

Loadod edges (x = O and k = L) fixed; one unloaded
edge (y = O) supported and the other unloaded edge (y = b)
freee

The l]o~dary conditions for thi,s cause ar”e: ““”

[l]W=O when x = O and when x = L

[2} ;<= o when x = O and when x = L

[3]W=0 when y = O

m
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when y = O

7

——---—

when Y = b

when Y = b

To solve this problem by the energy method, assume
an expression for the buckled surface of the form,

w= f(x) F(g)

From boundary condition [5]

r(x) 1“ (b) = - vf~(x) r(b)

(The primes indicate the order of tho partial derivatives.)

This relation nay ba written

.—

r(x) = _MF(b)
fll(x) ~ll(b)

Similarly, from boundary condition 6

f(x) FI1*(I))= -(2-v) f“(x) F’(b)

or

f(x)
= -(2J’(b)

fll(x) ~lIl(b)

Combining these two equations

~F(b) I?[~t(b)= (2-I-L) F\(b) F“(b) (3)

Boundary conditions 3 and 4 are satisfied by an expres-
sion of the form

w= f(x) (y+Byn)

——

.—

i.e. Y(y) = (y+Byn) (4)

where n#l
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Substituting equation (4) and its derivatives into equation
(3) and solving for B

g

H
B=

v
(5)

where H=
2-wn+p

(6)
2(Vn-p-n)

The boundary conditions [1] and [2], defining the conditions
at the loaded edges, are satisfied by

f(x) (=A1-cos~
)

The expression for the shape of the buckled plate is then

w (=A l-cos )+ (y+Byn) (7)

Substituting equation (?’) and its partial derivatives into i
the energy equation (2) and rodncing, yields for the criti-
cal value of Xx

Nxcr =
ca

b2
(8)

{

n(n-1)
2 (1-k)+ c(l+w)(n+l)-(n-l)]H+ (1-y)n- ~gn-l) Ha }

+ (9)

[

1 ‘2~2_+_
3

H+~112
n+ 2 2n+2 1

Substituting for w in equations (6) and (9), the
accepted value for aluminum alloys v = 1/3

L
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a
.[

n4 -2n3+n2
4

()
L 3 1.H2c 2n-3

= (L/b)2 + ~ ~4 &H+&H2
n+ 2 1

2
+—

31T2

and

[-:
2+(5 -n) H+~Ea

?~ + &H+&H2

L3 n+ 2 2n+l.1
H=-=

2+4n

9

(9a)

(6a)

The expression chosen for the shape of the buckled
plate (equation (?)) is based on the assumption that the
plate will buckle into one half wave regardless of the
L/i) ratto, It has been demonstrated that plates loaded
through supported edges, and with one unloadod edge sup-
ported and the other free (case 1), will bucklo in this
manner (roforence 1, p. 339) . There is no reason to be-
lieve that fixing the loaded edges would change this char-
acteristic of the buc.kl”ing of such a plate. That buckling
will always occur in tho form of one half wave means that
the minimum value of C will occur at an infinite value
of L/11. Referring to equation (9a), it can %e seen that
a minimum value for C will occur at so-me-finite value of
L/b unless the coefficient of the second term is zero.
The only significant valuo of the parameter n which Will
reduce this coefficient to zero is n = 7. 13quation (Sla)
then reduces to

c + 0.406
= (L;b)2

(lo)

Timoshenko gives an approximate expression for C for case
1 (reference 1, p. 340) , which involves two terms, corre-
sponding to thoso in equation (1). While this approximti%e

. .

expression is advocato~ for long plates, it also gives val-
ues of sufficient accuracy for short plates. Tho only. sig-

—

nificant difference between equation (10) and tho corre-
sponding equat_ion for case 1 lies in the term involving
(L/b)2.’ For c,ase la this term is four titios as large as
for case 10 “

—
-.—:

—
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L. . .. .

Equation (8) expressed in terms of critiCal stress
becomos r

()
2

G;ra.
.=-”c~L. ;

,,,12 I-p’s

Therefore, the coefficient K,” for which values aro plot-
ted in figure 1, may be oxprcssed

—

Case 2a

Loaded edges (X = O and x = L) fixed; one(~~o:;cd
edge (V = 0) fixed and the other unloaded edge
free.

!i?heboundary conditions for this case are:

[Ijw=o when x = O and when

[2] ah= o
ax

when x = O and when

—.

f-

X= L

L
E

x=

[3] w = o when y = O

.-

when y = b

[6]
a=wa3’r + (2-~) — =p ayaxa 0

when y = b

Assume an expression for the buckled surface of the
form

w= f(x) F(Y)

Sinco boundary conditions “[5] and L6J are th”e kame as for
case la (a freo edge), equation (3),.is also “applicable to
this case, Boundary conditions. ~~] a“ntt,~[4]”.R~cs~t.isf’ipd
hy an expression of the farm ‘ ““” “ ‘ j

.-

W= f(x)
(
I-cos y

)
,,,

i.e., F(y) =
(
1-COS y

)
(11)
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Substituting equation (11) and its derivatives into equa-
tion (3) and solving for n

Pcos n = - — (12)
2(1-IL)

for p = 1/3 (for alunirium alloys)

n = 1.8343 .—

While in cases 1 and la the plate can buckle into
only one half wave, in cases. 2 and 2a the buckled config-
uration nay contain oae or more ,half waves~ depending on
the proportions of the plateq In solving this prohlen,
two geaeral forms of configuration have been considered.
??irst, it was assumed that the,;plate buckled into one
half wave. Then a solution was obtained which covers buck-
ling into any even nrmber of half waves, the solution be-
ing carried out specifically for two half waves. Buckling
into a nunber of half waves greater than 2 was not con- ““
sidered, since in such cases the effect of the condition

.

of restraint at the loaded edges is negligible.

....C.oasidering the plate to buckle into one half wave,
the- %oundary conditions [I] and [2], defining the condi-
tions at the loaded. edges, will be satisfied by the oqua- ‘“
tion

f(x) (=A 1-COS ~ )
and the expression for the buckled surface will be

w=
(

2-irxA l-co$ —
)( 1-COS +

)
(13) -

L

Substituting equation (13) and its partial derivatives in-
to the energy equatioa (2), and solvin~ for the critical
value for Nx gives (for alu.ninun alloys)

Nxcr = ~~ n=D
.

., ‘i

where

c 4 La= — + 0.0993
()Y

+ 0.624 (14)
La

()
— —

:
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I?or the type of buckling involving an even nunber of
half waves; the configuration nay be apyroxinated by the.
eqUatiOil

w (=Asin.&+~
)(

ny \
1-COS y

)
(15)

whero J and 3 are coefficients to he evaluated fron
the boundary conditions. In this instance tho axes are
taken as shown in figuro 3, and the integrals with re-
spect to dx in tho energy equation (2) are taken botwoon
the linits O and L/2. Boundary conditions [1] and [2]
becoce

(1) W=o when X = +L/2

(2) *=0 when x = &L/ 2

&.

-.

‘P

I’ro.n %oundary condition 1 ..

3= -8 sin J

Evaluating J fron boundary condition [2], yields tho
transcondentul equation

J= 3 tan J (16)

The various roots of this equation givo values correspond-
ing to various even numbers of half waves of the buckled
configuration The lowest root corresponds to a buckled
fern of two half waves. This root iS

J = 4..0782

T!hc critical value for I?x can be found as before,
by substituting equation (15) and its partial derivatives
into the energy equation. Such a substitution, in which
the coefficient J has been replaced by its lowest root,
gives for the critical load for aluminum alloys (w = 1/3) .

Nxcr =
~fi

32 “

where

u’

t

-:
.
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*

.

4

c
= 5.626

()

L2
+ 0.0L?8/L2 + 0.638

()

T
F

(17)

As before, the K values shown in the curves are
related to tho C values as

case 4

(Y ‘xLoaded edges = O and x = L) supported; one
unloaded edge = o) fixed and the other unloaded edge
(Y = b) supported.

The boundary conditions for this case are:

[1] W=~ when x = O and when x = L

[.2] az~v F32W= ()~+lJ-- aya when x = O and when x = L

[3JW=0 when y = O

[4-J $.0 when y = O

[5]W=0 when y = b r’

[6]
a% a2w
~+P---== ax= o when y = b

.<
.

--

Following the method of solution of the differential
equation (1] described by Timoshenko (reference 1, p. 33?)
in which tho solution is taken in the form

w= f(xj sin ~

the general expression for f(Y) ~ can be written

and cl, Ca, C3, and C4 are coefficients to be evaluated
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from the boundary conditions. Erom boundary conditions
~] and [4] it follows that

cLc3-@o.i

cl =-2a
am3+f3c4

and %=-2a

and f(v) can %8 written

f(y) = A(cos$y - coshay) + B (siney - $inhay)

Trom boundary conditions [5] and [6] two simultaneous
equetions are obtained. !l!hecritical stress can then be
o%tained %y equating to zero the determinant of these equa-
tions in A and B. This manipulation results in tho
transcendental equation

=.
-.

For given values of /L b, this equation can he solved
for Nxcr, using for the number of half waves (m) the in- k-

togor which results in minimum values. The critical stress
can %C expressed in tho form

and the coefficient K thus cvaluatod for different ratios
of L/b.

Rli!l?31RNNCXS

1. !?imoshenko ~ Stephen: Theory of Elastic Stability.
McGraw-Hill Book Oo., Inc. (New York), 1930.

2. Timoshenko, Stephen: Strength of Materials.
D. Van Nostrand Co., Inc. (New York) , 1930.
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